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Machine learning for spatial prediction

Overview this session

e Machine learning for spatial prediction
e Intro to random forest
e Model spatial location with machine learning

e Model selection

e Model interpretation
e QOverview machine learning beyond random forest

e Challenges of machine learning for spatial analysis



1 Geostatistical data analysis
today



1.1 Spatial data analysis - examples

Binary responses - Landslide occurrence (lab 1)
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European wide air pollution mapping
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Feature engineering - algorithms

0 0
. . - 1 . . . | pU
Erosionsakkumulation , HOhe uber Gewasser M 20
MRVBF 3 berechnet mit Gewéassernetz 30

swissTLM3d 40




Feature engineering - settings

Topographic Position Index (TPI)

TPI Radius 50 m TPI Radius 500 m TPI Radius 2 km B s
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Multi-attribute soil mapping
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1.2 Drawbacks of classical geostatistical (kriging)
approaches

1. What “properties” does a spatial prediction method need to have to
handle today’s spatial data problems?

2. What are the challenges with classical geostatistical approaches
regarding these “properties”?
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2 Introduction to random
forest



Why random forest here?

e Quite fast model fitting and prediction

Models interaction in the data, models non-linear relationships

Very good predictive power expected, therefore often used for spatial
prediction

No extrapolation over value range of the response

Prediction uncertainty for continuous responses (at point location)
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2.1 Random forest - Overview

e Ensemble machine learning method
e Classification and regression trees (CART) as base element

e Bagging (Bootstrap aggregation)

e Large number of trees are fully grown
e Trees are decorrelated with
s Resampling of original dataset with replacement
= Only arandom subset of covariates are tested to split tree nodes

e Prediction is the average of all trees (continouous response) or the
majority vote (binary or multinomial response).
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Classification and regression trees - binary splitting
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Classification and regression trees - tree

Response: soil pH

Covariates: forest/no- LW.Wald = Wald
forest, ML: molasse
TPI500m >=.23.557 Gew.Vert >= 13 098

geological unit, /
to pograp hic index Gew.Vert >= 74 931 TPI500m >= 14.727 ML 5= 0. 0235

)
V.e rtl Ca l d ISta n Ce a bove wVert >= 57.183 TPI500m >=-4.5528

river.
5:0693 56959 62215
: GewVe“<52 s ‘

Value in box: mean pH of

all locations falling in this eewven>—1s-az4

tree node. /

Gew Vert < 22 031 Gew Vert < 13 959

ML<01235 ML >=0.1315 527714 ML<00555
4.8969 5693 5.1056 55327 55345 6. 3126
n=20 n=8 n=19 n=83 n=34



Classification and regression trees - formally

Technique: Recursive binary splitting

Consider all covariates X1, ..., X, and all possible values s for splitting for each of the
covariates, and then choose a covariate X ; and splitpoint s such that the resulting tree
has the lowest residual sum of squares.

For any 7 and s a half-plane is defined by
Ri(j,s) =4{X|X; <s} and Rx(j,s) ={X|X; > s}

where 7 and s are chosen to minimize

Y wi-yr)+ Y, (Wi—ug)

1x;€Ry (j,S) i xz€R2 ]7

with ¥y and yp, being the mean of the observations values in tree node Ry (j, s) and
R5(j, s), respectively.
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Random forest algorithm

1. Resample dataset (with replacement)

2. Take a random sample of covariates of size mtry

3. Test all selected covariates: find optimal covariate value to split data into 2 portions
4, Chose covariate with lowest error (e.g. MSE) and split data

5. Continue to split the data with (3)-(4) until you are left with a small number of data points
(min.node.size)in each leaf of the tree

6. Repeat (1)-(5) ntree times

Full training data 1. Realization 2. Realization
: t
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Random forest tuning

Main tuning parameters:

e mtry: number of randomly selected covariates to test at each split
e ntree: number of trees (mostly not sensitive, if large enough)

e min.node.size:size of remaining dataset in tree leaf, when it stops to split (mostly
not sensitive, if small enough)

Other options:

e splitrule:loss function to split data
e max.depth: limit tree depth (interaction depth), otherwise fully grown

e case.welghts:increase/decrease weights of to be sampled for a tree (e.g. because
of data quality)

e ... many more (in general not changing the big picture)
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Random forest — Default split rules

Regression - Mean squared error

MSE = 23 (i — f (@)’

n 1=1

with y; being the observed value, f (z;) the prediction that prediction function f gives

for the 7th observation and n the total number of observations. For random forest, f is
the mean prediction of all fitted regression trees.

Classification - Gini index

K
G = Zﬁmk(l — ﬁmk)
k=1

with p,.;. being the proportion of training observations in the mth tree leaf from the kth
class (response category), across all K classes.
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Random forest - Compute predictions
CART

For each location, decide in which tree end node it falls (“send” each location with its
covariate values down the trees). Take the mean (regression) or proportion/majority class
(classification) of the observations within this end node.

Random forest

21 22 +B
with f (z), f (z),...,f () beingpredictions of one single CART, random forest

predictions are averaged over B different bootstraped (bagged) samples b used for the

~b
training of f ()

B
f bag Z

b:

For regression, this results in a weighted mean of all the observations. For classification,
we obtain proportion of classes “voting” for an categorical outcome.
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Random forest - Out-of-bag predictions

e Due to resampling with replacement, ~1/3 of observations is not used for one single
tree. They are “out-of-bag” (OOB).

1. take a random sample of N 2. Fit tree to resampled dataset of N
(with replacement) Hence, some data points are not used for
some data points will be duplicated/ model fitting, they are out-of-bag.

triplicated, some will not be chosen
(about 30 % will be left out)
> o} ..o.‘
o o ®

| v 3. Compute predictions
| | | for the out-of-bag data
sees WS % % points

These predictions can now be
compared to the observed

values and error statistics can
dataset of N be calculated.
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2.2 Quantile regression forest - Uncertainty

o Keep all observations in the final tree leaves

e Getdistribution D from all observations that were in tree leaf with observation y;

e Compute required quantities from D like 90 % prediction intervals or standard errors

Full training data
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3 Spatial auto-correlation in
ML models



3.1 Apply geostatistics on residuals

Often termed “regression kriging”, even if combined with machine
learning. Two step approach:

1. Fit non-spatial model, compute its residuals.

2. Fit ordinary kriging to residuals.

Predictions are a sum of model outputs from (1) and (2).

Non-spatial model can also be a linear regression (see e.g. analysis of
Wolfcamp data).

Difficulty:

e quantification of prediction uncertainty

e some challenges with kriging are re-introduced
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3.2 Spatial coordinates as covariates

Add x- and y-coordinate axis as additional covariates.

Allows random forest to partition the study area into smaller sections and
fit local models.

y
Todel trend not only North-South and East-West,
rotate coordinate axis by « y
(in figure: 30° and 60°)

Y
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3.3 Relative spatial distances as covariates

An additional set of covariates is defined based on the relative distance to each
observation:

Xg ={dp,,dp,,...,dp }

where dpi is the euclidean distance (or any other more complex proximity distance) to the
observed location p; and n is the total number of training observations.

For each n observations one covariate is added (R packages GSIF, spatialLRF).

Example covariate layer for one observation by euclidean distance (left) or travel time distance

" e
N\

’
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3.4 Spatial neighbors as covariates

Include observed values from n nearest locations and distances to these
locations.

For each n nearest neighbor 2 colums are added as covariates:

e value at nth nearest observation

e distance corresponding to the location contributing the observed value

T Is a tuning parameter.

R package RFST

30



3.5 Smooth surface of coordinates

Works for Generalized Additive Models (GAM), i.e. fitted by boosting algorithm (R packages
mgcv, mboost, geoGAM).

e Spatial auto-correlation can be modeled by including a “smooth spatial surface”
e Non-stationary covariate effects by interactions with surface (tensor splines)

e Difficulty: choice of degrees of freedom for splines surfaces.

] coefficient
* 1.5 ¢
1.0
-0.5

100 km
o —

FiG. 6. Spatial difference in Red Kite breeding between
1979-1983 and 19961999 for model (add/vary). The breeding X ) . ) . )
probabilities in the northwestern part decreased, while the FiG. 8. Spatially varying coefficients for altitude in Red
southwestern part goes with increased breeding probabilities. ~ Kite breeding model (add/vary); here altitude was standardized
For the four selected areas [(i) Unterfranken, (ii) Schwaben,  to the unit interval. Altitude has a positive effect in the western
(ii1) Mittelfranken, and (iv) Niederbayern], the variability of the fmd northwestern part, while its effect is zero or even negative
estimated spatial difference is shown in Fig. 7. Spatial in the rest of Bavaria.
differences can be interpreted as difference in log-odds ratios. Hothorn et al. 2011
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4 Select relevant covariates



4.1 Model selection

Model building

Select structure of the model, i.e. relevant covariates and relevant response-covariate relationships.

Model selection

Select relevant covariates, drop non-relevant or correlated covariates.
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Model selection - reasoning

Model selection, why:

e Decrease computing time (e.g. for prediction).
e Moreinsight what is important. Improve future covariate preparation.

e Large number of strongly correlated/nearly identical covariates might lead to
overvitting.

Why not:

e Potential loss of predictive performance.

e Correlated covariates might improve predictions locally, at tail of distributions.

e Control overfitting by method (e.g. bagging, regularization).

Removal of many covariates might lead to jumpy/uneven final map.

Chosen ML algorithm should be able to deal with large number of correlated covariates.
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Model selection with random forest

Variable importance

2 types of covariate importance:

Sum of decrease in goodness-of-fit error by adding splits of this
covariate (impurity), oriented on fitting the data. How much do we
reduce error by using this covariate at this split?

Mean decrease in OOB error by randomly permuting a covariate,

oriented on predictions. How much worse do OOB predictions get if we
randomly shuffle a covariate?
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4.2 Approach 1: Recursive backward elimination

1. Remove covariate(s) with lowest importance.
2. Refit random forest with remaining.
3. Repeat (1)-(2) until all covariates are removed.

4. Find optimum number of covariates with minimal OOB error.
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4.3 Approach 2: Boruta algorithm

1. All covariates are shuffled randomly. Shuffled covariates are appended
to original covariates (shadow covariates).

2. Refit random forest with “real” and “shadow” covariates
3. Repeat (1)-(2) multiple times with different random seed.

4. Keep only covariates that are on average of larger importance than the
shadow covariates.
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Boruta algorithm result
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5 Model interpretation



5.1 Effects plots
Partial dependence plots

Partial depencende function fs for the covariate s evaluated by calculating averages over
the data used for model calibration:

. 1< . Z.
folzs) = n Zf(w-ﬂng))
1=1

Partial dependece function reports for given value of covariate s the average marginal
(4)

effect on the prediction. z ; are actual covariate values for remaining covariates in which
we are not interested in. n is the number of observations in the dataset.

Assumption: no correlation between covariate s and remaining covariates C.
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Partial dependence plots - example

a) Soil organic carbon _ ‘Z - _|b) - |0 —
U - -
Density field estimate 20 5 5
(4 classes) > T - | —
v
5
~ Slope at = o o |
sampling location > o | o
oy
. .a -_———
Sampling depth - < 2 24
©
_8 M~ M~
Gravel content - £ o - S
£
| I I I I | T T T T T T 1 | I | I
0 20 40 60 80 100 0 50 150 250 350 D1 D2 D3 D4
Relative importance of predictors Soil organic carbon [g kg™] Density field estimate class

Importance and depenence plots for a model to predict soil density (expensive to measure) from
other soil properties (cheaper to observe).
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Accumulated local effects plots

Accounting for correlation structure in covariates.

Instead of using mean of remaining covariates £ a moving window approach is
implemented.

1.00 4

0.75 1

0.50

X2

0.25

0.00

Molnar, 2024. Fig. 8.8 44



Accumulated local effects plots - example

f 1(x_1)

f 4(x_4)
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6 Machine learning methods



There is not just random forest

| tried to tidy up ...

0©

—

Regression Dimension
linear and non-linear reduction
models, geostatistics  pCcA, PLS

FONERIPN

Decision trees Neuronal
CART networks

LT
e

Regularisation
Shrinkage

Lasso

Support vector
machines
kernel methods

posterior

rior

Bayes
methods

Ensembles

bootstrap, boosting,

model averaging
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ML for spatial prediction - summary

Advantages

e Machine learning (ML) handles todays requirements well
= Large dataset sizes (n observations, n covariates)
= Lowering computational demands
= Automatic model selection and building of model structure

Classification tasks

Uncertainty for point locations

Disadvantages
e Spatial auto-correlation is only integrated in ad-hoc manner - currently no satisfactory
solution

e Standard errors for spatial averages only via workaround (e.g. to report quantities per
municipality or arable land parcel)

e Solved problems within classical geostatistics reoccur for ML
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