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Machine learning for spatial prediction
Overview this session

 

• Machine learning for spatial prediction

• Intro to random forest

• Model spatial location with machine learning

• Model selection

• Model interpretation

• Overview machine learning beyond random forest

• Challenges of machine learning for spatial analysis
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1 Geostatistical data analysis

today
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1.1 Spatial data analysis - examples

Binary responses – Landslide occurrence (lab 1)
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European wide air pollution mapping
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Feature engineering - algorithms

8



Feature engineering - settings
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Multi-attribute soil mapping
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1.2 Drawbacks of classical geostatistical (kriging)

approaches

1. What “properties” does a spatial prediction method need to have to

handle today’s spatial data problems?

2. What are the challenges with classical geostatistical approaches

regarding these “properties”?

11



2 Introduction to random

forest
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Why random forest here?

• Quite fast model fitting and prediction

• Models interaction in the data, models non-linear relationships

• Very good predictive power expected, therefore o�en used for spatial

prediction

• No extrapolation over value range of the response

• Prediction uncertainty for continuous responses (at point location)
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2.1 Random forest - Overview

• Ensemble machine learning method

• Classification and regression trees (CART) as base element

• Bagging (Bootstrap aggregation)

• Large number of trees are fully grown

• Trees are decorrelated with

▪ Resampling of original dataset with replacement

▪ Only a random subset of covariates are tested to split tree nodes

• Prediction is the average of all trees (continouous response) or the

majority vote (binary or multinomial response).
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Classification and regression trees – binary splitting
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Classification and regression trees – tree

Response: soil pH

Covariates: forest/no-

forest, ML: molasse

geological unit,

topographic index,

vertical distance above

river.

Value in box: mean pH of

all locations falling in this

tree node.
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Classification and regression trees – formally
Technique: Recursive binary splitting

Consider all covariates , and all possible values  for splitting for each of the

covariates, and then choose a covariate  and splitpoint  such that the resulting tree

has the lowest residual sum of squares.

For any  and  a half-plane is defined by

where  and  are chosen to minimize

with  and  being the mean of the observations values in tree node  and

, respectively.
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Random forest algorithm

1. Resample dataset (with replacement)

2. Take a random sample of covariates of size mtry

3. Test all selected covariates: find optimal covariate value to split data into 2 portions

4. Chose covariate with lowest error (e.g. MSE) and split data

5. Continue to split the data with (3)-(4) until you are le� with a small number of data points

(min.node.size) in each leaf of the tree

6. Repeat (1)-(5) ntree times
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Random forest tuning
Main tuning parameters:

• mtry: number of randomly selected covariates to test at each split

• ntree: number of trees (mostly not sensitive, if large enough)

• min.node.size: size of remaining dataset in tree leaf, when it stops to split (mostly

not sensitive, if small enough)

Other options:

• splitrule: loss function to split data

• max.depth: limit tree depth (interaction depth), otherwise fully grown

• case.weights: increase/decrease weights of to be sampled for a tree (e.g. because

of data quality)

• … many more (in general not changing the big picture)
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Random forest – Default split rules
Regression – Mean squared error

with  being the observed value,  the prediction that prediction function  gives

for the th observation and  the total number of observations. For random forest,  is

the mean prediction of all fitted regression trees.

Classification – Gini index

with  being the proportion of training observations in the th tree leaf from the th

class (response category), across all  classes.
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Random forest – Compute predictions
CART

For each location, decide in which tree end node it falls (“send” each location with its

covariate values down the trees). Take the mean (regression) or proportion/majority class

(classification) of the observations within this end node.

Random forest

With  being predictions of one single CART, random forest

predictions are averaged over  different bootstraped (bagged) samples  used for the

training of 

For regression, this results in a weighted mean of all the observations. For classification,

we obtain proportion of classes “voting” for an categorical outcome.
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Random forest – Out-of-bag predictions

• Due to resampling with replacement, ~1/3 of observations is not used for one single

tree. They are “out-of-bag” (OOB).

23



2.2 Quantile regression forest – Uncertainty

• Keep all observations in the final tree leaves

• Get distribution  from all observations that were in tree leaf with observation 

• Compute required quantities from  like 90 % prediction intervals or standard errors

D yi

D
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3 Spatial auto-correlation in

ML models
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3.1 Apply geostatistics on residuals

O�en termed “regression kriging”, even if combined with machine

learning. Two step approach:

1. Fit non-spatial model, compute its residuals.

2. Fit ordinary kriging to residuals.

Predictions are a sum of model outputs from (1) and (2).

Non-spatial model can also be a linear regression (see e.g. analysis of

Wolfcamp data).

Difficulty:

• quantification of prediction uncertainty

• some challenges with kriging are re-introduced
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3.2 Spatial coordinates as covariates

Add x- and y-coordinate axis as additional covariates.

Allows random forest to partition the study area into smaller sections and

fit local models.

Todel trend not only North-South and East-West,

rotate coordinate axis by 

(in figure: 30° and 60°)

α
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3.3 Relative spatial distances as covariates
An additional set of covariates is defined based on the relative distance to each

observation:

where  is the euclidean distance (or any other more complex proximity distance) to the

observed location  and  is the total number of training observations.

For each  observations one covariate is added (R packages GSIF, spatialRF).

Example covariate layer for one observation by euclidean distance (le�) or travel time distance

(right).
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3.4 Spatial neighbors as covariates

Include observed values from  nearest locations and distances to these

locations.

For each  nearest neighbor 2 colums are added as covariates:

• value at th nearest observation

• distance corresponding to the location contributing the observed value

 is a tuning parameter.

R package RFSI

n

n

n

n
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3.5 Smooth surface of coordinates
Works for Generalized Additive Models (GAM), i.e. fitted by boosting algorithm (R packages

mgcv, mboost, geoGAM).

• Spatial auto-correlation can be modeled by including a “smooth spatial surface”

• Non-stationary covariate effects by interactions with surface (tensor splines)

• Difficulty: choice of degrees of freedom for splines surfaces.
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4 Select relevant covariates

33



4.1 Model selection

Select structure of the model, i.e. relevant covariates and relevant response-covariate relationships.

Select relevant covariates, drop non-relevant or correlated covariates.

Model building

Model selection
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Model selection – reasoning
Model selection, why:

• Decrease computing time (e.g. for prediction).

• More insight what is important. Improve future covariate preparation.

• Large number of strongly correlated/nearly identical covariates might lead to

overvitting.

Why not:

• Potential loss of predictive performance.

• Chosen ML algorithm should be able to deal with large number of correlated covariates.

• Correlated covariates might improve predictions locally, at tail of distributions.

• Control overfitting by method (e.g. bagging, regularization).

• Removal of many covariates might lead to jumpy/uneven final map.
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Model selection with random forest
 

Variable importance

2 types of covariate importance:

• Sum of decrease in goodness-of-fit error by adding splits of this

covariate (impurity), oriented on fitting the data. How much do we

reduce error by using this covariate at this split?

• Mean decrease in OOB error by randomly permuting a covariate,

oriented on predictions. How much worse do OOB predictions get if we

randomly shuffle a covariate?
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4.2 Approach 1: Recursive backward elimination
 

1. Remove covariate(s) with lowest importance.

2. Refit random forest with remaining.

3. Repeat (1)-(2) until all covariates are removed.

4. Find optimum number of covariates with minimal OOB error.
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4.3 Approach 2: Boruta algorithm

1. All covariates are shuffled randomly. Shuffled covariates are appended

to original covariates (shadow covariates).

2. Refit random forest with “real” and “shadow” covariates

3. Repeat (1)-(2) multiple times with different random seed.

4. Keep only covariates that are on average of larger importance than the

shadow covariates.
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Boruta algorithm result

blue: shadow

covariates,

minimum, mean,

maximum

green: larger

importance than

shadows

yellow: unclear

decision (within

variation of

shadow max)

red: smaller

importance than

shadows
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5 Model interpretation
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5.1 Effects plots

Partial dependence plots

Partial depencende function  for the covariate  evaluated by calculating averages over

the data used for model calibration:

Partial dependece function reports for given value of covariate  the average marginal

effect on the prediction.  are actual covariate values for remaining covariates in which

we are not interested in.  is the number of observations in the dataset.

Assumption: no correlation between covariate  and remaining covariates .
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Partial dependence plots – example

Importance and depenence plots for a model to predict soil density (expensive to measure) from

other soil properties (cheaper to observe).
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Accumulated local effects plots
Accounting for correlation structure in covariates.

Instead of using mean of remaining covariates  a moving window approach is

implemented.

Molnar, 2024. Fig. 8.8

xC
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Accumulated local effects plots – example
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6 Machine learning methods
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There is not just random forest
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ML for spatial prediction – summary
Advantages

• Machine learning (ML) handles todays requirements well

▪ Large dataset sizes (n observations, n covariates)

▪ Lowering computational demands

▪ Automatic model selection and building of model structure

▪ Classification tasks

▪ Uncertainty for point locations

Disadvantages

• Spatial auto-correlation is only integrated in ad-hoc manner – currently no satisfactory

solution

• Standard errors for spatial averages only via workaround (e.g. to report quantities per

municipality or arable land parcel)

• Solved problems within classical geostatistics reoccur for ML
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