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1 Geostatistics: theory,
variogram properties,
maximum likelihood,
prediction



Overview

e Stochastic process

e Realization of stochastic process

e Variogram functions

e Sample variogram and fitting of variogram function

e Maximum likelihood estimation of model parameters
e Model selection/inference

e Predictions for ordinary and universal/external drift kriging



2 Stochastic process



2.1 Terminology and model notation (session 1)
Model for data: Y; = S(x;) + Z;

where
Y; :it? datum
S(x;) : “signal” (= true quantity) at location x;

Z; . iid. random measurement error

Decomposition of signal into trend u(x;) and stochastic fluctuation:
S(x;) = p(xi) + E(x;)

where commonly a linear model is used for p(x;)

u(xi) = Y di(x:)Br = d(x)" B
k

with d (x; ) denoting (spatial) covariates and { F(x;) } a zero mean stochastic process
(random field).



2.2 Realization of stochastic process

e Spatial phenomena obey laws of physics = are deterministic, have physical causes

e Numerous processes and interactions thereof produce current complex outcome

e Variation appears random = in geostatistical terms viewed as a random process

e e.g. rainfall pattern, soil properties, air pollution as a realization of a random process
e Each location x is associated with a suite of values with a known distribution

e Actual value observed at x is viewed as one value of this distribution, allocated at
random

e Random function has no mathematical description, but “structure” in the sense of
correlation in space (or time) and describes relation of random values at different

locations to each other
Spatial stochastic process (random process)

{S(x)}: Collection (= set) of random variables S(x) : x € D C R at location x in area D, with a
well defined joint distribution




Stationary and isotropic stochastic processes

Stationarity: Assumption that allows to treat data with same degree of
variation over region of interest.

Strictly stationary process: Joint distributions of arbitrary collections of random
variables {S(x1), ..., S(x,)} areinvariant to translations by vector h € R?

{S(x1),...,8(xn)}and {S(x1; + h),...,S(x, + h)} have the same joint
distribution:

F(s1,...,80;X1,...,Xp) = F(81,...,8.3%1 + h,...,x, + h)

Isotropic: Weakly stationary process that is invariant to rotations (opposite: anisotropic).

Gaussian stochastic process: All joint and conditional distributions are normal.
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Second-order stationary stochastic processes

Weakly or second-order stationary process:

Distributions of arbitrary pairs of random variables (S(x), S(x + h)) satisfy:

1. E[S(x)] = constant (independent of x)
2. Cov(S(x + h), S(x)) = v(h) (independent of x)
3. Var(S(x)) = constant (independent of x)

= Covariance depends on h and only on h, the separation between samples in both
distance and direction

= Strict stationarity implies weak stationarity.

= Stationarity is required for estimation/prediction with a single realization of the
stochastic process.
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2.3 Covariance function and variogram

Definition of variogram V' (h) and covariance function y(h):
1
V(h) = EVar (S(x+h) - S(x))

7(h) = Cov (S(x + h), 5(x))

Relation between variogram and covariance function:

V(h) = ~(0) —~(h), with ~(0)= Var(5(x))

= Variogram is preferred.

Variogram is based on differences only (no distribution mean as in covariance). Allows to

relax stationarity assumptions even further, instead of E[S(x)| = constant, we can
assume (intrinsic stationarity):

E[S(x +h) — S(x)] = 0
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Variogram and correlogram

Relation between correlogram and covariance function for weakly stationary process:

_ v(h)

Relation between variogram and correlogram:

Symmetry:



Covariance and Variogram Plot
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Summary stochastic process

e Stochastic process: generalisation of multidimensional random variable

e Stationarity assumption required for estimation from single realisation
of stochastic process

e In practice assumption of weak stationarity:
1. constant mean
2. constant variance

3. covariance and semivariance depends only on lag distance but not on
location

e Often additional assumption of isotropic auto-correlation
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3 Variogram functions and
their properties



Principle features of the variogram

Increase in variance with increasing lag

Function must guarantee non-negative variances

Sill variance cg + ¢, i.e. an upper bound

Range of spatial correlation a, where auto-correlation becomes 0
Nugget variance cg, i.e. a positive intercept

with ¢ often called partial sill, i.e. part of variance with spatial structureup to a
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Special cases (@) Unbounded (b) Bounded

variation variation

. . . . . . Spatiall atia
e Anisotropy, i.e. directional variation depondent  oataly

A

»

independent
depending on angle )

Sill variance

e Unbounded variogram (not second-order
stationary)

Variance

e Pure Nugget variogram Nugget variance

Co

\/

A

Lag distance

(Oliver and Webster, 2015, Fig. 3.10)
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Pure nugget variogram

Absence of auto-correlation (nugget effect covariance)

V(h):{o ith=20

co otherwise

Mechanism: measurement error and/or small-scale spatial variation

19



Pure nugget variogram - realization

1 1library(sp); library(terra); library(gstat)
2 # unconditional Gaussian simulation on a grid
3 xy <- expand.grid(1:140, 1:100)
4 names (xy) <- c("x","y")
5 gridded(xy) = ~x+y
6 v.m <- vgm(nugget=1, model = 'Sph', psill = 0, range = 0.0001)
7 plot(variogramLine (v.m, maxdist = 50), type = "1", ylim = c¢(0,1.1))
8 g.sim <- gstat(formula = z~1, dummy = TRUE, beta = 0, model = v.m, nmax = 100)
9 r.sim <- predict(g.sim, xy, nsim = 1)
10 plot(rast(r.sim))
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Spherical variogram function

(

qH—c{%—%(%)g} for0 < h<a
V(h):<co—|—c for h > a
. €0 for h =0

where ¢y is the nugget variance, c the variance of spatially correlated component and a is the range
of spatial dependence.

Spherical, c0 =0.3,¢c =0.7,a=20
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Spherical variogram function - realizations

1 A <- vgm(nugget=0.3, model = 'Sph', psill
2 B <- vgm(nugget=0.05, model = 'Sph', psill
3 C <- vgm(nugget=0.3, model = 'Sph', psill
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Exponential variogram function

cO—I—c{l—ewp(%)} for0 < h

V(h) =
() {C() for h =0

with a here being a distance parameter.

The function approaches the sill asymtotically and does not have a finite range. For practical
purposes usually an effective range a’ is used which is approximately 3a.

Exponential, c0 = 0.3, ¢ = 0.7, a = 20/3

00 02 04 06 08 1.0
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Exponential variogram function - realizations

1 A <- vgm(nugget=0.3, model = 'Exp', psill = 0.7, range = 7)
2 B <- vgm(nugget=0.0001, model = 'Exp', psill = 0.999, range = 20)
3 C <- vgm(nugget=0.1, model = 'Exp', psill = 0.9, range = 20)

semivariance
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Matérn (Gaussian) variogram function

V(h) =co+c {1 - 2’0111“(v) (_%)K (%) }

with ¢g, ¢ and a being nugget, sill and range parameters as before. here being a distance
parameter.

The equation embodies the gamma function I" with parameter v and the Bessel function
of the second kind, K, for parameter v.

Parameter v describes the smoothness of variation and can vary from 0 (very rough) to
infinity (very smooth).

With v = 0.5 it becomes the exponential variogram.
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Matérn function - Variogram smoothness

Matérn, c0 =0.05,¢c=0.95,a=5

S
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lag h
Shape of variogram close to origin controls smoothness of realizations of stochastic processes:

1. Variogram with nugget: realizations non-continuous

2. Variogram grows linearly at origin: realizations continuous, but not everywhere differentiable

3. Variogram grows at at least quadratically at origin: realizations everywhere at least once
differentiable
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Matérn variogram function - realizations

1 A <- vgm(nugget=0, model = 'Mat', psill = 1, range = 6, kappa = 0.5)
2 B <- vgm(nugget=0, model = 'Mat', psill = 1, range = 3.5, kappa = 1.5)
3 C <- vgm(nugget=0, model = 'Mat', psill = 1, range = 2.5, kappa = 3)

semivariance
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4 Model for Gaussian spatial
data



4.1 Model for Gaussian spatial data
Model for data: Y; = S(x;) + Z; = p(x;) + E(x;) + Z;

o with ¥;: 4" datum; S(x;): “signal” (true quantity) at location x;; (x; ): trend

e {E(x;)}: azero-mean Gaussian process, parametrized by covariance function ~y(h; 8) or
variogram V' (h; 6)

e Z7;:iid Gaussian measurement error with variance 72

Trend p(x;) modeled by linear regression model with spatial covariates d(x; )

() = Y di(xi)Br = d(x:)" B
k

Unknown elements of the model:

1. Structure and parameters (3 of the trend model

2. Covariance (or variogram) parameters 6

3. Nugget variance T2
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4.2 Trend modelling

Ordinary least squares (OLS) trend estimation
Gaussian model in vector notation: Y = X8+ E + Z

Estimation of trend parameters (3 by ordinary least squares:
Bors = (X' X)'X'Y
For spatially uncorrelated data (E = 0; Cov(Y, YT) = 721):
BOLS ~N (5772(XTX)_1)

For spatially auto-correlated data
Cov(Y,Y')=Cov(Z,Z') + Cov(E,E") =Ty = 721 + 3

Bors ~ N (B 2(XTX) !+ (XTX) X TZpX(X'X) )

Conclusion: Ignoring auto-correlation: BOLS unbiased, but the standard
errors are too small. Tests based on OLS fit are biased!

31



Generalized least squares (GLS) trend estimation
Generalized least squares estimates:
Bars = (X'T,'X)'X'T, 1Y

GLS = OLS with “orthogonalized” response and design matrix.
Sampling distribution:

Bors ~ N (6,(XTT,'X) ™)
For spatially uncorrelated data (I'y = 721):

Bars = Bors

BGLS has the smallest standard errors among all linear estimators (Gauss-Markov theorem), hence
it’s the BLUE (Best Linear Unbiased Estimator).

BGLS is the maximum likelihood estimate for Gaussian Y.

Generalised least squares (GLS) is the method of choice for estimating coefficients of the
trend model.
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4.3 Computing the sample variogram

e Sample variogram (also experimental variogram) consists of
semivariances at a finite set of discrete lags h.

e Underlying function is continuous for all A.
e Variogram modelling:

1. Compute sample variogram

2. Fit smooth function that describes principal features of semivariance
sequence
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4.4 Computing sample variogram of residuals

Extractresiduals R =Y — XB of the fitted linear model (or use data Y if the model
has constant u(x)).

Choose bin width dh (and width of angular classes d¢) to define the (k, 1) lag class,
h;;, characterized by:

e Distance: (hy — dh, hy + dh]
e Angularclass: ¢; — do, ¢; + do
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Computing sample variogram - formally
Form all Ny; pairs (2, 7) withx; — x; ~ hy;.

Compute for each lag class hy; the semivariance:

o 1
V(hkl) — 2Nkl

> [R(x) — R(xy)’

(ivj)Ehkl

Sample variogram: Plot of V(hkl) vs. hy;.

Rules of thumb:

1. Ensure enough data pairs per lag class. Choose dh (and d¢) such that Ny; > 30 — 50.

2. Only compute the variogram for half the size of the study area.
Largest hy; < 0.5 max(x; — x;).
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lag class width=5 km

Examples of different lags (Wolfcamp data)

lag class width=10 km
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4.5 Fitting variogram model to sample variogram

e Semivariance is required for arbitrary lag distances when computing predictions.
e Smoothing the sample variogram by fitting a parametric variogram function V'(h, ).

e Choose a variogram function that approximates the shape of the sample variogram
well, particularly close to the origin.

e Fit parameters 6 by (weighted) least squares:

n R 2
= argmin Z ’w(hkl) (V(hkl) — V(hkl, 9))
0 Kl

Options for weighing:

1. Equal weights: w(hy;) =

1
2. By number of pairs: w(hy;) = Ny
Nl
V(hy,0)°

3. Cressie’s weights: w(hy) =

37



Fits with different weights (Wolfcamp data)

semivariance
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Fits with different lags (Wolfcamp data)

semivariance
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4.6 Problems with ad-hoc model estimation

e Subjective choice of lag class width and weighting method for model fitting.

o Estimates of semivariance for different lag classes are mutually correlated; the choice
of variogram function based on the sample variogram is problematic.

e The sample variogram is susceptible to outliers, hence robust estimators are preferred.

e Fitting a model function to the sample variogram requires further subjective choices.

e An ad-hoc approach provides biased estimates of the variogram of the underlying
stochastic process if the trend is modeled.

e Therefore, the estimate of the variogram based on the sample variogram of OLS
residuals is biased.

e Thus, estimate trend and variogram parameters simultaneously using maximum
likelihood.
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5 Maximum likelihood
estimation



5.1 Maximum likelihood (ML) estimation of
parameters of Gaussian model for spatial data

e Principle of maximum likelihood estimation: find parameters that maximize joint
probability for observed data

e Properties of maximum likelihood estimates: asymptotically unbiased and fully
efficient; asymptotically normally distributed

e profile likelihood useful for exploring shape of likelihood surface and for computing
confidence intervals based on likelihood ratio test
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Maximum likelihood estimation

Consider a Gaussian stochastic process {Y (x) } with a linear trend function.

Any arbitrary set of random variables Y = (Y (x1), ..., Y(X,)) has a multivariate

Gaussian distribution with expectation:

E[Y] = XA

and covariance matrix:

Cov(Y,Y') =Ty
The joint probability density for Y is given by:

F(336.6) = (2m) 3Tl exp( 5 by - XAV, (v~ X5} )
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Maximum likelihood estimation (cont.)

Unknown model parameters:

1. Regression coefficients 3

2. Covariance (or variogram) parameters 6

The log-likelihood function (up to a constant) is given by:

L(B,6;y) = — 5 log(Tal) — o {y — XBY'T, {y - X6}

For known variogram parameters € maximum likelihood estimate for 8 equals GLS estimator:

Bers = (XTT,'X)'XTr, 'y

Plugging BGLS into L(5, 0; y) gives the profile likelihood function for 6.

No closed form expression for maximum likelihood estimate

Maximize L numerically by a non-linear optimization method to find 0

e Numerical optimization requires initial values of 6

Make sure numerical optimization converged!
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Example: MaxLik estimates Wolfcamp data

1 library(gstat); library (georob)
2 data("wolfcamp"); d.w <- wolfcamp
3 coordinates(d.w) <- c("x", "y")
4 r.georob.ml <- georob(pressure~x+y, d.w,
5 locations=~x+y, variogram.model="RMspheric",
6 param=c (variance=3000, nugget=1000, scale=100),
7 tuning.psi=1000, control=control.georob (ml.method="ML"))
8 summary (r.georob.ml)
Call:georob (formula = pressure ~ x + y, data = d.w, locations = ~x +

y, variogram.model = "RMspheric", param = c(variance = 3000,
nugget = 1000, scale = 100), tuning.psi 1000, control = control.georob (ml.method =

Tuning constant: 1000
Convergence in 12 function and 7 Jacobian/gradient evaluations

Estimating equations (gradient)

nMI," ) )
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Wolfcamp: MaxLik fitted variogram

1 plot(r.georob.ml, lag.dist.def=20, max.lag=200)
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O
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o
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|

0
l

I I I
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5.2 Restricted maximum likelihood estimation

Equivalent number of independent observations of a sample of spatial data often much
smaller than nominal sample size = bias of ML estimates of variance parameters
important

The bias of MLEs of variogram parameters 6 can be reduced by restricted maximum
likelihood estimation (REML).

Principle of REML:

1. Form linear combinations Z = AY of the data Y that have zero expectation (no
longer depend on B):

E[Z] = AXS =0

The matrix A must satisfy: AX =0

A is non-unique with many possibilities
2. Estimate 8 by maximizing the likelihood function for n — p elements of Z.
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REML estimates Wolfcamp data

1 r.georob.reml <- georob (pressure~x+y, d.w,

2 locations=~x+y, variogram.model="RMspheric",

3 param=c (variance=3000, nugget=1000, scale=100),
4 tuning.psi=1000)

5 summary (r.georob.reml)

Call:georob (formula = pressure ~ x + y, data = d.w, locations = ~x +
y, variogram.model = "RMspheric", param = c(variance = 3000,
nugget = 1000, scale = 100), tuning.psi = 1000)

Tuning constant: 1000

Convergence in 6 function and 5 Jacobian/gradient evaluations

Estimating equations (gradient)

eta scale
Gradient : -2.248651e-04 -1.070402e-01

Maximized restricted log-likelihood: -456.3802

Predicted latent wvariable (B):

Min 10 Median 30 Max
-94.58 -60.99 -17.59 23.10 115.72
Residuals (epsilon) :

Min 10 Median 30 Max

-59.148 -18.009 6.251 15.982 54.620

Standardized residuals:
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6 Model inference



6.1 Inference, model building and assessment

Data analysis often leads to a set of equally plausible candidate models
that use different set of covariates and different variograms

e compare fit of candidate models by hypothesis tests taking auto-
correlation properly into account

e use established goodness-of-fit criteria (AIC, BIC) to select a “best”
model, again taking auto-correlation into account

e use cross-validation to compare the power of candidate models to
predict new data
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Testing hypotheses about trend coefficients

o Likelihood ratio (LRT) test can only be used to test hypotheses and build confidence
regions for 6

e LRT for regression for Bin general biased (too small p-values)
e Use conditional F-tests for testing hypotheses about 3:

1. Fit covariance parameters of “largest” regression model

=0
2. Compute covariance matrix=I';
3. Orthogonalize response vector and design matrix (using Cholesky decomposition)

4. Conventional F'-test with orthogonalized items Y and X
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Fit quadratic trend surface model for Wolfcamp

1 r.georob.full <- update(r.georob.reml, .~.+I1(XA2)+I(yA2)+x:V)
2 summary (r.georob.full)

Call:georob (formula = pressure ~ x + y + I(xA2) + I(yn2) + x:y, data = d.w,
locations = ~x + y, variogram.model = "RMspheric", param = c(variance = 3000,
nugget = 1000, scale = 100), tuning.psi = 1000)
Tuning constant: 1000
Convergence in 10 function and 8 Jacobian/gradient evaluations

Estimating equations (gradient)

eta scale
Gradient : 3.590344e-04 -4.553394e-03

Maximized restricted log-likelihood: -470.3894
Predicted latent variable (B):
Min 10 Median 30 Max
-89.22 -46.81 -11.06 20.80 94.07
Residuals (epsilon):
Min 10 Median 30 Max

-59.664 -18.086 6.783 16.245 49.986

Standardized residuals:
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Conditional F-test on interaction and higher-order
polynomials

1 waldtest(r.georob.full, .~.-x:y, test="'prm")

Wald test

Model 1: pressure ~ X + y + I(xA2) + I(yA2) + x:y

Model 2: pressure ~ X + y + I(xA2) + I(yA2)
Res.Df Df F Pr (>F)

1 79

2 80 -1 1.1032 0.2968

1 waldtest(r.georob.full, .~.-I(xA2)-I(yA2)-x:y, test="F")

Wald test

Model 1: pressure ~ X + y + I(xA2) + I(yA2) + x:y
Model 2: pressure ~ X + y

Res.Df Df F Pr (>F)
1 79
2 82 -3 1.6284 0.1895
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6.2 Model selection with stepwise

Given estimates of covariance parameters 0 and keeping them fixed, the usual stepwise procedures
for selecting covariates can be used.

Selecting models based on AIC and BIC.

Stepwise selection with AIC (defaults to both directions)

1l step(r.georob.full)

Start: AIC=922.16
pressure ~ x + y + I(xA2) + I(yA2) + x:vy

Df ATC Converged
- I(xA2) 1 922.05 1
- I(yn2) 1 922.13 1
<none> 922.16
- X:y 1 922.49 1

Step: AIC=922.05
pressure ~ x + y + I(yA2) + x:y

Df AIC Converged
<none> 922.05
+ I(xA2) 1 922.16 1
- I(yn2) 1 922.54 1

- Xy 1 924.61 1
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Stepwise selection (defaults to both directions) with BIC

1 step(r.georob.full, k=log(nrow(d.w)))

Start: AIC=936.81
pressure ~ x + y + I(xA2) + I(yA2) + x:vy

Df ATC Converged
- I(xn2) 1 934.27 1
- I(yn2) 1 934.34 1
- Xy 1 934.70 1
<none> 936.81

Step: AIC=934.27
pressure ~ x + y + I(yA2) + x:vy

Df AIC Converged
- I(yn2) 1 932.31 1
<none> 934.27
- X:y 1 934.38 1
+ I(xA2) 1 936.81 1

Stev: ATC=932.31
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7 Kriging predictions



7.1 Prediction problem formulation

Observations y' = (y1,. .., y,) available for a set of n locations x;

Consider y as a realization of the random variable Y = (Y7, ...,Y;)

Model: Y; = S(x;) + Z; with:

e Y;:the i datum
e S(x;): “signal” (the true quantity) at location x;
o {S(x;)}: Gaussian process, parametrized by:
« Trend: () = 5y di(x:) e = d(x:) 5
= Covariance function y(h; @) or variogram V' (h; 0)

e /;:independent, identically distributed (iid) Gaussian measurement error with variance T2
Predictions: Let’s say S is the prediction of ST = (S(x1);- - -, S(xm)) for a set of m locations x’

without data.

S is computed from Y, therefore S = S(Y).
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7.2 Kriging prediction at new point location
Ordinary punctual kriging

For same spatial support - prediction entities are assumed to have same extension as
observations (i.e. sampling area, sensor size)

Prediction of signal S(xg) at location x( without measurement
R n
S(xp) = Zﬁii(xo) y(x;)
i—1

with kriging weights k; (X ). To ensure unbiased estimates, weights are made to sum to 1:

N
Z lﬁ)i(wo) =1

Expected difference E[S(x¢) — S(x¢)] = 0.
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Estimate of kriging variances

Estimate of the variance of the prediction error:

var[S(xy] = E HS(XO) — S(XO)}]

N N
Ki(x0)V (xi,%X0) — ZZ"% Xo) K (X0)V(xi,%;)

I
M-

with V(x;, Xo ) being the semivariance of S between sampling point x; and the target
prediction point xo and V (x;, X;) the semivariance between the ith and the jth
sampling points.
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Find kriging weights

Kriging weights are calculated by solving the system of equations that minimizes the
prediction error variance subject to the constraints of the variogram model.

Find weights k; (X ) that minimize kriging variances and sum to 1 by solving N + 1
equations:

N
Z ki(x0)V (xi,%5) + ¥(x0) = V(xj5,%x0) forall j
i=1

N

Zmi(wo) =1

The quantity ¥(xg) is a Lagrange multiplier introduced to achieve minimization.
Computed as the inverse of the semivariance matrix multiplied by the vector of

semivariances to the target point.
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Properties of kriging prediction

e Shape of variogram function close to origin determine shape of prediction surface near data
locations

e Continuity and diffentiability of variogram at origin control geometrical properties of simple
kriging prediction surface

o4
N_
a
o
U) o_ ..........................................
‘T_
—— RMexp
o RMexp+RMnugget
—— RMmatern
0.0 0.2 0.4 0.6 0.8 1.0

X.prime
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7.3 Universal/external drift kriging predictions

Universal kriging: often referred if trend is modelled by coordinates

External-drift kriging: trend is modelled by spatial covariates

Evaluating gopt requires a fully specified weakly stationary model:

1. Structure of trend function is known
2. Regression coefficients B are known
3. Type of parametric covariance (variogram) function is known

4. Parameters 0 and 72 of the covariance function are known

Relaxed assumptions: Only 1, 3, and 4 are assumed to be known, while Gis implicitly
estimated from the data using generalized least squares (GLS).
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UK/EDK predictions

Therefore, we use the universal kriging (UK) or external drift kriging (EDK) plug-in
predictor:

Sk = XsBas + A (}’ — XYBGLS)

with:

A= ZSYI‘;;

Computing universal kriging predictor requires:

1. known structure of trend function

2. known structure and parameters of variogram

“Plug-in” predictor: uncertainty of variogram is ignored when computing predictions
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