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1 Geostatistical analysis of lognormal data with anisotropy

1.1 Exploratory analysis
Copper content in soils around metal smelter in Dornach
Data:

e dornach.txt
e dornach_ grid.txt

Read the data file dornach.txt into R. The data set contains the following variables:

e x, y: anonymized coordinates of sites where soil samples were taken, the origin
coordinate system is the main stack of the smelter,

e survey: factor coding the survey in which the data was collected,

of the


data/dornach.txt
data/dornach_grid.txt
data/dornach.txt

e forest: factor coding whether the site is in a forest,
e built.up: factor coding when a site has been built up,
o geology: factor coding the geologic parent material at a site,

e cu, cd, zn: heavy metal concentration (mg/kg) in topsoil (0-20 cm depth).

We will predict topsoil copper content cu to evaluate the pollution situation over the study
are.

@ Task 1

Plot the spatial distribution of the sites with observed cu and its value, use e.g. a bubble
plot.

@ Task 2

Add the distance to the smelter as a new column to the data. Explore the distribution
of cu. Find a suitable transformation for both cu and the distance to approximately
linearize the relationship.

@ Task 3

Explore the directional relationship. Compute the angle to the smelter by atan2(x,y)
and convert the angle to a factor using cut (), e.g. differentiate North/East/South/West.
Plot the angles with different colors per directional group.

Solution Task 1

d.dornach <- read.table("data/dornach.txt", header=TRUE, stringsAsFactors = TRUE)

plot(y~x, d.dornach, cex=sqrt(cu)/10, asp=1)
abline(h=0, 1lty="dotted"); abline(v=0, lty="dotted")
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There are very larger values nearby the smelter. Further away, less samples are available, but
the cu concentration also drops.

Solution Task 2

Compute distance to smelter:

d.dornach$dist <- with(d.dornach, sqrt(x”"2 + y~2))

par (mfrow=c(2, 2))

plot(cu~dist, d.dornach)

plot(log(cu)~dist, d.dornach)

with(d.dornach, scatter.smooth(log(cu)~log(dist)))
scatter.smooth(log(d.dornach$cu)~log(d.dornach$dist))



o
o
g (o]
o = ©
3 38 = o
N g < % o o
& co0 ® © o
o N o
T T T T
0 500 1500 2500 1500 2500
dist dist
o - 2 o 4
~ 7] % 7]
3 ] g ]
8 < _8 < —
—_ P; —_
N — > o~ -
T T T T T T — °
45 50 55 6.0 65 70 75 8.0 45 50 55 60 65 7.0 75 8.0
log(dist) log(d.dornachs$dist)

Dependence of cu on dist

cu concentration is largest close to the main stack of the smelter which is at x = 0 and y =
0. The plot of cu vs. dist shows a sharp decrease of cu with increasing dist. Furthermore,
for short distances there is much more variation in cu than for long distances. We mend this
issue by plotting log(cu) against dist. The plot shows now an (approximately) exponential
decay of log(cu) with dist and we linearize the relation by log-transforming dist as well.

Solution Task 3

Compute orientation to main stack of smelter (coordinates 0,0):

d.dornach$angle <- with(d.dornach, atan2(y,x))
d.dornach$sector.4 <- as.numeric(cut(d.dornach$angle,
breaks=pi*c(-1, -0.75, -0.25, 0.25, 0.75, 1)))
d.dornach$sector.4[d.dornach$sector.4==5] <- 1
d.dornach$sector.4 <- factor(d.dornach$sector.4, levels = 4:1,
labels = c("N", "E", "S", "W"))



Next, we color the points in the plot of log(cu) vs. log(dist) by sector.4 and smooth the
points sector-wise by loess():

palette(c("black", "orange", "blue", "cyan"))

plot(log(cu) ~log(dist), d.dornach, col=sector.4)

for( i in 1:nlevels(d.dornach$sector.4)){
sel <- with(d.dornach, sector.4 == levels(sector.4)[i])
lines(with(d.dornach, loess.smooth(log(dist) [sell, log(cu) [sell)), col=i)

}

legend("topright", 1lty=1, col=1:nlevels(d.dornach$sector.4),
legend=levels(d.dornach$sector.4), bty="n")
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The loess() smooths for the 4 sectors run approximately parallel but are vertically shifted:
For a given distance concentrations are largest for sectors N & S followed by E and W. Hence,
for a given distance, concentrations between sectors N & S and W differ on average by a fac-
tor of about exp(1) 3. This suggests that we should take orientation into account when
modelling the trend. As the loess() lines are approximately parallel we include only a
direction-dependent intercept in the regression model (but not a direction-dependent slope).



One possibility would be to include the factor sector.4 in the model. However, this would
result in a non- continuous trend surface with discontinuities at the sector boundaries.

1.2 Fit a trend model

@ Task 1

Fit a ordinary least squares regression using distance and angle as explored above. Use
cos() and sin() to transform the angle in continuous covariates (results in a periodic
function).

@ Task 2

Extract the residuals from this regression model and check whether cu further depends
on the land use (variables forest, built.up), on the parent material (geology) and on
the origin of the data (survey)? Use for example boxplots with notches. If necessary
update the regression model by adding those covariates that seem to influence cu.

@ Task 3

Assess the fit of the regression model by the usual residual diagnostics plots and display
the spatial distribution of the residuals by a bubble plot.

Solution Task 1

r.1m.0 <- Im(log(cu) ~ log(dist) + cos(angle) + sin(angle), d.dornach)
summary (r.1lm.0)

Call:
Im(formula = log(cu) ~ log(dist) + cos(angle) + sin(angle), data = d.dornach)

Residuals:
Min 1Q Median 3Q Max
-3.8196 -0.3654 -0.1141 0.3179 2.5253

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 14.17023 0.44372 31.935 <2e-16 **x
log(dist) -1.46553 0.06963 -21.047 <2e-16 **x



cos(angle) 0.18586 0.08278  2.245 0.026 *
sin(angle) -0.03102 0.08803 -0.352 0.725

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

Residual standard error: 0.7084 on 177 degrees of freedom
Multiple R-squared: 0.7194, Adjusted R-squared: 0.7146
F-statistic: 151.2 on 3 and 177 DF, p-value: < 2.2e-16

Solution Task 2

par (mfrow=c(2,2))

plot(residuals(r.1lm.0)~forest, d.dornach, notch=TRUE)
plot(residuals(r.1lm.0)~built.up, d.dornach, notch=TRUE)
plot(residuals(r.1lm.0)~geology, d.dornach, notch=TRUE)

Warning in (function (z, notch = FALSE, width = NULL, varwidth = FALSE,
notches went outside hinges ('box'): maybe set notch=FALSE

plot(residuals(r.1lm.0)~survey, d.dornach, notch=TRUE)

. some
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There might be a weak dependence on forest and geology. We add therefore these covariates
to the model:

r.lm.1 <- update(r.lm.0, .~. + forest + geology)
summary (r.1lm.1)

Call:
Im(formula = log(cu) ~ log(dist) + cos(angle) + sin(angle) +
forest + geology, data = d.dornach)

Residuals:
Min 1Q Median 3Q Max
-3.9381 -0.3294 -0.0428 0.3138 2.5341

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 15.661489 0.716400 21.861 <2e-16 **x
log(dist) -1.592095 0.086969 -18.306 <2e-16 *x*x*
cos(angle) 0.130918 0.087229 1.501 0.1352
sin(angle) 0.006255 0.092776 0.067 0.9463
forestyes 0.051754  0.234277 0.221 0.8254
geologylimestone.b -0.199570 0.339470 -0.588 0.5574
geologyother -0.726249  0.322084 -2.255 0.0254 =*
geologytertiary -0.923083 0.356525 -2.589 0.0104 =*
Signif. codes: O '*x*xx' 0.001 '«x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6925 on 173 degrees of freedom
Multiple R-squared: 0.7379, Adjusted R-squared: 0.7273
F-statistic: 69.56 on 7 and 173 DF, p-value: < 2.2e-16

Whereas forest is not significant, some levels of geology seem to differ and we keep this variable
for the time being in the model, although the goodness-of-fit improved only marginally.

r.1m.2 <- update(r.lm.1, .~. - forest)
summary (r.1lm.2)

Call:
Im(formula = log(cu) ~ log(dist) + cos(angle) + sin(angle) +
geology, data = d.dornach)



Residuals:
Min 1Q Median 3Q Max
-3.9356 -0.3386 -0.0444 0.3459 2.5310

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 15.682236  0.708273 22.142 < 2e-16
log(dist) -1.590441  0.086409 -18.406 < 2e-16
cos(angle) 0.126856  0.085036  1.492 0.13757
sin(angle) 0.005361 0.092434 0.058 0.95382
geologylimestone.b -0.181828 0.328930 -0.553 0.58112
geologyother -0.753350 0.296990 -2.537 0.01207
geologytertiary -0.947709  0.337722 -2.806 0.00558
Signif. codes: O '#*x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1

Residual standard error: 0.6906 on 174 degrees of freedom
Multiple R-squared: 0.7378, Adjusted R-squared: 0.72
F-statistic: 81.6 on 6 and 174 DF, p-value: < 2.2e-16

Solution Task 3

plot(r.1lm.2)
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Residuals

Residuals vs Fitted
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Fitted values
Im(log(cu) ~ log(dist) + cos(angle) + sin(angle) + geology)
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Standardized residuals

Q-Q Residuals
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Theoretical Quantiles
Im(log(cu) ~ log(dist) + cos(angle) + sin(angle) + geology)
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Fitted values
Im(log(cu) ~ log(dist) + cos(angle) + sin(angle) + geology)
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Residuals vs Leverage
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Leverage
Im(log(cu) ~ log(dist) + cos(angle) + sin(angle) + geology)

plot(y~x, d.dornach, asp=1, cex=2*sqrt(abs(residuals(r.lm.2))),
col = c("blue", NA, "orange") [sign(residuals(r.1lm.2))+2])
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Apart from presence of some (mostly negative) outliers and auto-correlation of residuals at
adjacent locations there are no obvious violations of the modelling assumptions apparent.

1.3 Explore variogram and fit REML

@ Task 1

Compute the sample variogram of the residuals of the regression model and fit an expo-
nential variogram model to the sample variogram.

@ Task 2

Estimate the coefficients of the trend model fitted above and the parameters of the
exponential variogram model now by Restricted Maximum Likelihood (REML) using the
function georob().

15



@ Task 3

Fit an anisotropic variogram model with georob(). Fit £1 and omega and keep the other
parameters fixed. Check example on the help page.

Hint

Try to find reasonable starting values: According to above directional plot, cu values in Western
direction seem to be smaller, i.e. the decrease is larger than in the other directions. Therefore,
it is likely £1 < £2. For omega we would need to do more plotting or try to fit with georob()
and check if the numerical solving of the model converged. If not, we would need to find better
starting values.

@ Task 4

Assess the fit of the model by residual diagnostic plots.

Note: we could now to further model selection and trying to improve the model also by adding
interactions of the covariates. We could do some plotting and use georob: :step().

Solution Task 1

library(georob)
r.sv <- sample.variogram(residuals(r.lm.2),
locations=as.matrix(d.dornach[, c("x", "y")1),
estimator="matheron",
lag.dist.def=c(0, 10, 25, 50, 75, seq(100, 1000, by=50)))
plot(r.sv)
text (gamma~lag.dist, r.sv, labels=npairs, pos=1, cex=0.8)

16
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r.sv.exp <- fit.variogram.model(r.sv, variogram.model="RMexp",
param=c(variance=0.4, nugget=0.05, scale=30))
I.SV.exp

Variogram: RMexp
variance snugget (fixed) nugget scale
0.520286 0.000000 0.002627 12.950799

From the sample variogram one estimates a range of about 100 m. However, the fitted range
is much shorter, likely because of the large estimated semivariance for the 4th lag class. The
estimated nugget is close to zero, the sill equals 0.45. Note that the range parameter estimated
for an exponential variogram model is equal to about one third of the effective range read from
a sample variogram. Except for the variogram models with compact support (e.g. spherical
model family, cubic variogram model) the fitted range parameter is not equal to the effective
range of the sample variogram, but of course is linearly related to it.

17



Solution Task 2
r.georob <- georob(log(cu) ~ log(dist) + cos(angle) + sin(angle) + geology,
data=d.dornach, locations=~x+y, variogram.model="RMexp",

param=c(variance=0.4, nugget=0.05, scale=30), tuning.psi=1000)
summary (r.georob)

Call:georob(formula = log(cu) ~ log(dist) + cos(angle) + sin(angle) +
geology, data = d.dornach, locations = ~x + y, variogram.model = "RMexp",
param = c(variance = 0.4, nugget = 0.05, scale = 30), tuning.psi = 1000)

Tuning constant: 1000

Convergence in 8 function and 8 Jacobian/gradient evaluations

Estimating equations (gradient)

eta scale
Gradient : 3.020576e-04 -6.196804e-03

Maximized restricted log-likelihood: -183.649
Predicted latent variable (B):

Min 1Q Median 3Q Max
-1.92522 -0.26496 -0.02113 0.24321 1.63467
Residuals (epsilon):

Min 1Q Median 3Q Max
-2.06663 -0.10711 -0.01433 0.11256 0.91312
Standardized residuals:

Min 1Q Median 3Q Max
-6.7990 -0.3995 -0.0616 0.4807 3.3698

Gaussian REML estimates

Variogram: RMexp

Estimate Lower  Upper
variance 0.33807 0.21373 0.535
snugget (fixed) 0.00000 NA NA
nugget 0.16776 0.09349 0.301

18



scale 58.28482 25.42591 133.609

Fixed effects coefficients:
Estimate Std. Error t value Pr(>lt|)

(Intercept) 16.0660 0.9849 16.312 <2e-16 ***
log(dist) -1.6449 0.1255 -13.111  <2e-16 **x
cos(angle) 0.1846 0.1081 1.708 0.0894 .
sin(angle) 0.1777 0.1272 1.397 0.1643
geologylimestone.b -0.1616 0.3549 -0.455 0.6494
geologyother -0.8520 0.3365 -2.532 0.0122 x*
geologytertiary -0.8835 0.3752 -2.355 0.0196 *
Signif. codes: O '**x' 0.001 '**' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error (sqrt(nugget)): 0.4096

Robustness weights:
A1l 181 weights are ~= 1.

Solution Task 3

r.georob.aniso <- georob(log(cu) ~ log(dist) + cos(angle) + sin(angle) + geology,
data = d.dornach, locations=~x+y, variogram.model="RMexp",
param = c(variance=0.4, nugget=0.05, scale=30),
aniso = default.aniso(f1 = 0.3, omega = 50),
fit.aniso = default.fit.aniso(fl1 = TRUE, omega = TRUE),
tuning.psi = 1000)

summary (r.georob)

Call:georob(formula = log(cu) ~ log(dist) + cos(angle) + sin(angle) +
geology, data = d.dornach, locations = ~x + y, variogram.model = "RMexp",
param = c(variance = 0.4, nugget = 0.05, scale = 30), tuning.psi = 1000)

Tuning constant: 1000

Convergence in 8 function and 8 Jacobian/gradient evaluations

Estimating equations (gradient)

19



eta scale
Gradient : 3.020576e-04 -6.196804e-03

Maximized restricted log-likelihood: -183.649
Predicted latent variable (B):

Min 1Q Median 3Q Max
-1.92522 -0.26496 -0.02113 0.24321 1.63467
Residuals (epsilon):

Min 1Q Median 3Q Max
-2.06663 -0.10711 -0.01433 0.11256 0.91312
Standardized residuals:

Min 1Q Median 3Q Max
-6.7990 -0.3995 -0.0616 0.4807 3.3698

Gaussian REML estimates

Variogram: RMexp

Estimate Lower  Upper
variance 0.33807 0.21373 0.535
snugget (fixed) 0.00000 NA NA
nugget 0.16776 0.09349 0.301
scale 58.28482 25.42591 133.609

Fixed effects coefficients:
Estimate Std. Error t value Pr(>|t]|)

(Intercept) 16.0660 0.9849 16.312 <2e-16 **x
log(dist) -1.6449 0.1255 -13.111 <2e-16 **x
cos(angle) 0.1846 0.1081 1.708 0.0894 .
sin(angle) 0.1777 0.1272 1.397 0.1643
geologylimestone.b -0.1616 0.3549 -0.455 0.6494
geologyother -0.8520 0.3365 -2.532 0.0122 *
geologytertiary -0.8835 0.3752 -2.355 0.0196 *
Signif. codes: O '**x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error (sqrt(unugget)): 0.4096

Robustness weights:

20



A1l 181 weights are ~= 1.

Solution Task 4

par (mfrow=c(2, 2))
scatter.smooth(fitted(r.georob), residuals(r.georob, level=0),

main="TA plot regression residuals"); abline(h=0, lty="dotted")
qqnorm(rstandard(r.georob) , main="QQnorm independent error")
abline(0, 1, 1lty="dotted")
qqnorm(ranef (r.georob, standard=TRUE), main="QQnorm correlated error")
abline(0, 1, lty="dotted")

TA plot regression residuals QQnorm independent error

:O)

Sample Quantiles
2
L

residuals(r.georob, level
-2
L

fitted(r.georob) Theoretical Quantiles

QQnorm correlated error

Sample Quantiles
0
L

Theoretical Quantiles

Apart from the heavy-tailed distribution of the estimated independent (ffz and spatial auto-
correlated error component there are no obvious violations of modelling assumptions apparent.
Note that
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o the outliers evidently also affect the estimated values of the spatially correlated error
component and

¢ that for both error components the variances are over-estimated because the slope of the
curve is less than one except for the tails. Hence, outliers seem to inflate the variance
estimates.

This suggests that the spatial model should be estimated robustly. The function georob()
allows to estimate the parameters of a spatial model robustly, however time of the course was
too short to cover this.

1.4 Predictions with random forest

@ Task 1

Fit a random forest model with ranger() using all available covariates. Since cu is
strongly positively skewed use log(cu). Maybe plot importance of covariates.

Solution Task 1

library(ranger)

d.dornach$angle_cos <- cos(d.dornach$angle)

d.dornach$angle_sin <- sin(d.dornach$angle)

r.rf <- ranger( log(cu) ~ dist + angle_cos + angle_sin + survey + forest +
built.up + geology,

d.dornach, importance = "permutation")
r.rf
Ranger result
Call:
ranger(log(cu) ~ dist + angle_cos + angle_sin + survey + forest + built.up + geology,
Type: Regression
Number of trees: 500
Sample size: 181
Number of independent variables: 7
Mtry: 2
Target node size: 5
Variable importance mode: permutation
Splitrule: variance

22



00B prediction error (MSE): 0.4539877
R squared (00B): 0.7418209

Given the out-of-bag R? the model seems to fit the data well.

par (oma=c(2,5,1,1))
barplot(importance(r.rf), horiz = T, las = 2)

geology :|
built.up

forest ]

survey

angle_sin

angle_cos

dist

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4 -

Distance to the smelter seems to be again a very strong predictor. The built up area did not
seem relevant in the context of the linear model. Most likely, there are interactions with this
factor present, because the tree based structure of random forest is able to capture interactions
by subsequent tree splits.
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1.5 Model assessment

@ Task 1

Compute cross-validation for the geostatistical models fited with REML above (isotropic
and anisotropic). Use the function cv() with 1gn = TRUE to directly include unbiased
backtransformation of the lognormal response.

Would you use method = "random" or method = "block" for spatial cross-validation?

@ Task 2

Compute cross-validation for random forest model. Use the same cross-validation
subsets as above. You can access them from the georob cross-validation object by
yourObject$pred$subset.

@ Task 3

Compute scatterplots with predicted vs. observed. Add a lowess smoother and a 1:1-line.
Create these plots for the log-transformed results and the back-transformed results.
For random forest use backtransformation without bias correction.

@ Task 4

Compute meaningful validation metrics and compare the model performance.

Solution Task 1

We do not aim at evaluating spatial extrapolation. We would like to evaluate the model
performance within the study area. Therefore, random splitting of the data is sufficient. Leave-
block-out cross-validation would yield likely too pessimistic results for the mentioned goal.

Make sure the same subsets are used, either by keeping the seed the same or handing over the
subsets with the argument subset.

r.cv.iso <- cv(r.georob, seed = 13, method = "random", lgn = T)
r.cv.aniso <- cv(r.georob.aniso, subset = r.cv.iso$subset, lgn = T)

Solution Task 2
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We could use R packages that provide cross-validation functionality like caret (indices of
subsets can be handed over by using control()). But, since the task is simple and we want
to make sure that truly the same subsets are used, we quickly implement a for loop.

Note: for loops are simple but inefficient in R, we would better use an apply() function,
e.g. mclapply () or foreach() that allow for paralell computing.

d.cv.rf <- d.dornach[, c("x", "y", "cu")]
d.cv.rf$pred <- NA
for( set in 1:10){
sel.out <- r.cv.iso$pred$subset == set
rf.set <- ranger(log(cu) ~ dist + angle_cos + angle_sin + survey + forest +
built.up + geology,
d.dornach[!sel.out, 1)
d.cv.rf$pred[ sel.out ] <- predict(rf.set, d.dornach[sel.out, ])$predictions

Solution Task 3

library(ggplot2)
par (mfrow = c(2,3))

lim <- <(0,4000)
lim.log <- c(1.5,8.4)

ggplot(r.cv.iso$pred, aes(x = lgn.pred, y = lgn.data)) +
geom_point() + geom_smooth(se=F) +
geom_abline (slope=1, intercept = 0, linetype = "dashed") +
coord_fixed(ratio = 1) + ylim(lim) + x1im(lim) +
ggtitle("External drift kriging, isotropic")
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External drift kriging, isotropic
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ggplot(r.cv.iso$pred, aes(x = pred, y = data)) +
geom_point() + geom_smooth(se=F) +
geom_abline (slope=1, intercept = O, linetype = "dashed") +
coord_fixed(ratio = 1) + ylim(lim.log) + xlim(lim.log) +
ggtitle("External drift kriging, isotropic, log")
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External drift kriging, isotropic, log

data

pred

ggplot(r.cv.aniso$pred, aes(x = lgn.pred, y = lgn.data)) +
geom_point() + geom_smooth(se=F) +
geom_abline (slope=1, intercept = O, linetype = "dashed") +
coord_fixed(ratio = 1) + ylim(lim) + x1lim(lim) +
ggtitle("External drift kriging, anisotropic")
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External drift kriging, anisotropic
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ggplot(r.cv.aniso$pred, aes(x = pred, y = data)) +
geom_point() + geom_smooth(se=F) +
geom_abline (slope=1, intercept = 0, linetype = "dashed") +
coord_fixed(ratio = 1) + ylim(lim.log) + xlim(lim.log) +
ggtitle("External drift kriging, log, anisotropic")
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External drift kriging, log, anisotropic

data

pred

ggplot(d.cv.rf, aes(x = exp(pred), y = cu)) +
geom_point() + geom_smooth(se=F) +
geom_abline (slope=1, intercept = O, linetype = "dashed") +
coord_fixed(ratio = 1) + ylim(lim) + x1im(lim) +
ggtitle("Random forest")
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Random forest
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ggplot(d.cv.rf, aes(x = pred, y = log(cu))) +
geom_point() + geom_smooth(se=F) +
geom_abline (slope=1, intercept = 0, linetype = "dashed") +
coord_fixed(ratio = 1) + ylim(lim.log) + xlim(lim.log) +
ggtitle("Random forest, log")
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Random forest, log

log(cu)

pred

On log-scale we do not observe conditional bias (bias depending on the predicted value). Over-
all, there are some outliers, but most data-pairs follow well the 1:1-line.

Backtransformed on the original scale of the response, we observe large poorly predicted out-
liers. Depending on the model (iso- or anisotropic, RF) the structure of those outliers seems
to be different. Especially for RF we observe a “cut-off”. There are no values predicted larger
than 1500 although there are quite some observations with larger concentrations.

Solution Task 4

Define a formula. We could also use georob: :validate.predictions(), but there is no R?
and it requires a standard error.

f.metrics <- function(data, pred){
e <- data - pred
c( me = mean(e),
rmse = sqrt(mean(e”2)),
r2 = 1 - sum(e”2) / sum((data - mean(data))”~2)
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Compute metrics on the log transformed observations and predictions:

f.metrics(r.cv.iso$pred$data, r.cv.iso$pred$pred)

me rmse r2
-0.01180025 0.66041442 0.75058870

f.metrics(r.cv.aniso$pred$data, r.cv.aniso$pred$pred)

me rmse r2
0.07223092 0.72345659 0.70069913

f.metrics(log(d.cv.rf$cu), d.cv.rf$pred)

me rmse r2
-0.002998657 0.657520549 0.752769709

Compute metrics on the backtransformed:

f.metrics(r.cv.iso$pred$lgn.data, r.cv.iso$pred$lgn.pred)

me rmse r2
16.6647681 453.7127669 0.4759478

f.metrics(r.cv.aniso$pred$lgn.data, r.cv.aniso$pred$lgn.pred)

me rmse r2
33.4686880 534.4724215 0.2727845

f.metrics(d.cv.rf$cu, exp(d.cv.rf$pred))

me rmse r2
116.171336 471.590707 0.433835
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On log-scale, we do not observe problems with marginal bias (me). Regarding RMSE and R?
the anisotropi model performs worst. Isotropic universal kriging and random forest are in a
similar range, while the latter seems to be a tiny bit better.

However, do not over-interpret this small difference. If we would run the cross-validation again
with a different random splitting (as you most likely have done), then we would receive slightly
different metrics. Given the cross-validation metrics, the two methods are likely similar, i.e. in
the range of variation of cross-validation.

For the back-transformed predictions, conclusions are slighly different. The anisotropic model
still performs worst given RMSE and R2. But, random forest now exhibits a large bias, 10
times larger than isotropic universal kriging. This might be due to the missing bias correction
for backtransforming the data, but also due to the lack of predicting large values by random
forest.

Bias is usually a problem for end-user applications. Therefore, on the back-transformed data
we would clearly prefer the isotropic kriging.

1.6 Prediction for dornach_grid

@ Task 1

Compute kriging predictions with the best performing REML fit above. For this use
predict(..., control=control.predict.georob(extended.output=TRUE), then use
the function 1gnpp() to obtain the unbiased backtransformation of the lognormal pre-
dictions.

@ Task 2

Compute random forest predictions. Backtransform by exp().

@ Task 3

Create maps of predictions and kriging standard errors. Compare the maps.

Note: for random forest we could compute the full predictive distribution using quantreg =
T for the model fit and predict(..., type = "quantiles", quantiles = ...). From this
distribution, we could form the required quantity at each pixel.

Solution Task 1
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library(terra)

d.dornach.grid <- read.table("data/dornach_grid.txt", header=TRUE,

stringsAsFactors = TRUE)

[o TN o PN o PR o P

R

add same columns as for model calibration
.dornach.grid$dist <- with(d.dornach.grid, sqrt(x~2 + y~2))
.dornach.grid$angle <- with(d.dornach.grid, atan2(y,x))
.dornach.grid$angle_cos <- cos(d.dornach.grid$angle)
.dornach.grid$angle_sin <- sin(d.dornach.grid$angle)

compute lognormal external drift kriging predictions
.uk <- predict(r.georob, newdata=d.dornach.grid,

control=control.predict.georob(extended.output=TRUE))

: SpatRaster
: 251, 301, 12 (nrow, ncol, nlyr)
18, 8 (x, y)

: -1044, 1364, -884, 1124 (xmin, xmax, ymin, ymax)

. memory

#

r.uk <- lgnpp(r.uk)
r.uk <- rast(r.uk)
r.uk

class

dimensions
resolution

extent

coord. ref.
source(s)

names

min values
max values

Solution Task 2

R o #=*

pred, se, lower, upper, trend,

remove missing data
.sel <- complete.cases(d.dornach.grid)
.rfpred <- predict(r.rf, data = d.dornach.grid[ t.sel, ])

d.dornach.grid$pred.rf[t.sel]l <- exp(r.rfpred$predictions)

La e

.dornach.grid <- rast(d.dornach.grid[,c("x", "y", "pred.rf")])
.dornach.grid

34

back-transform prediction results to original scale of measurements

var.pred,

: 3.087958, 0.2245505, 1.883039, 4.121587, 3.087427, 0.01911292,
: 7.976808, 0.6636982, 7.109685, 9.045084, 8.657005, 0.29057960,



class
dimensions
resolution
extent

coord. ref.

source(s)
name

min value
max value

: SpatRaster

: 261, 301, 1
: 8,8 (x, y)
: -1044, 1364, -884, 1124

(nrow, ncol, nlyr)

(xmin, xmax, ymin, ymax)

. memory

pred.rf
49.83535
1565.77216

Solution Task 3
plot(r.uk["lgn.pred"], col= hcl.colors(palette = "Y10rRd", 30)[30:1],

breaks=c(0, 50, 100, 150, 300, 500, 1000, 2000, 3000, 4000, 5000, Inf),
main = "External drift kriging predictions")

External drift kriging predictions
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plot(r.uk["lgn.se"], col= hcl.colors(palette = "Y10rRd", 30) [30:1],
breaks = c(seq(0, 500, by=50), Inf),
main = "EDK standard errors")

EDK standard errors
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1000
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plot(r.dornach.grid["pred.rf"], col= hcl.colors(palette = "Y10rRd", 30) [30:1],
breaks=c(0, 50, 100, 150, 300, 500, 1000, 2000, 3000, 4000, 5000, Inf),
main = "Random forest prediction")
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Random forest prediction
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The spatial pattern predicted by random forest looks considerably different than predicted
by isotropic universal kriging. Again, we do not see the large concentrations being predicted
around the smelter. In addition, the mapped cu surface is rather bumpy and seems dissected
by the regression tree structure of random forest.

We would now need to investigate the feasibility of the mapped pattern with the original
data and by checking with the situation of the smelter (location in valley, forested areas etc.).
Moreover, we could discuss the result with a pollution expert to get more insight on the
expected true pattern.

For random forest it is usually necessary to have a larger number of predictors to create smooth
prediction surfaces. Therefore, we could also investigate if there are more relevant predictors
for the study area.

2 Model assessment pH predictions Berne data set

In lab session 3 you computed predictions for topsoil pH in the Berne study area. We did not
yet fully inspect the model performance.
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Find your saved CSV file from session 3 or download the example CSV. CSV

@ Task 1

Create plots and metrics as you see fit. What is the model performance? Are there
relevant problems?

Solution Task 1
d.val.berne <- read.csv("data/lab3-validation-set-ph-predictions.csv")
ggplot(d.val.berne, aes(x = pred.ph.0.10, y = ph.0.10)) +

geom_point() + geom_smooth(se=F) +

geom_abline (slope=1, intercept = 0, linetype = "dashed") +

coord_fixed(ratio = 1) + ylim(c(4.5,8.5)) + x1im(c(4.5,8.5)) +
ggtitle("Predictions from Lab 3")

“geom_smooth() ~ using method = 'loess' and formula = 'y ~ x'
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data/lab3-validation-set-ph-predictions.csv

Predictions from Lab 3

ph.0.10

;
pred.ph.0.10

f.metrics(d.val.berne$ph.0.10, d.val.berne$pred.ph.0.10)

me rmse r2
0.1015193 0.6183406 0.4519854

According to the help page of the berne data the validation data set was formed by data-
splitting It was assigned at random by using weights to ensure even spatial coverage of the
agricultural area.

Therefore, we get a decent estimate of the predictive performance of the model. If you check
the point distribution, however, they are somewhat clustered and there are areas without any
samples. We would now need to investigate if those “empty” areas are expected to be different.
This could be done by checking the covariate value distributions and/or by discussing it with
a soil surveyor that knows the area.

Regarding the results: We do not observe a marginal bias, however, it seems we have a slight
conditional bias with values between 6-7 being under-predicted. In addition, largest and
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smallest values do not get predicted, it seems random forest smoothes the value range of the
predictions compared to the value range of the observed response.

The RMSE, i.e. the standard deviation of the errors, is a bit more than half a pH unit (0.62).
The R? is only medium. Soil mapping studies, however, have often R? in this range as vari-
ability of soils is large, often not enough samples are available to describe the full “diversity”
and measurement error are considerable.
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