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1 Geostatistical analysis of elevation data (continued)

For the following exercises use the R code of the lecture slides on the introduction into spatial
data and the analysis of the Wolfcamp aquifer dataset as template.

You will continue to analyse the elevation data from the exercises of session 1.
1.1 Maximum likelihood estimation of spatial linear model

So far, you explored the data, you fitted a trend model, you plotted a sample variogram and
you fitted a spherical variogram function.

@ Task 1

Next estimate the parameters of trend model and variogram jointly by maximum likeli-
hood (ML). Use the same trend model and the same variogram function as before.




@ Task 2

Compare the ML estimates of the regression coefficients and their standard errors with
those obtained before by 1m(). Compare the ML estimates of the variogram parameters
with those obtained by fitting a variogram function to the sample variogram of the
residuals.

@ Task 3

Refit the sample variogram from session 1 (last task). Then, overlay the two estimated
variogram functions on the sample variogram of the residuals.

@ Task 4

Report the confidence intervals for the variogram parameters.

1.2 Residual diagnostics

@ Task 1

Assess the ML fit of the spatial model by a Tukey-Anscombe plot and a normal QQ-plot
of the ML regression residuals Y; — d(x;)T" = E(x;) + Z,.

@ Task 2

Create in addition a normal QQ-plot of the estimated independent errors ZAz and of the
spatially correlated component F(x;) of the residuals. Comment on the plots.

Hint

Use ?residuals.georob, ?rstandard.georob and 7ranef.georob to see how to extract the
various types of residuals from the fitted georob object.



1.3 Comparing alternative models

@ Task 1

If you have not yet done so, fit now a spatial model that uses a quadratic function in the
coordinates (second order polynomial) as trend model. Use again ML for estimating the
regression coeflicients and the variogram parameters.

@ Task 2

Fit in addition a model that uses a linear function of the coordinates (first-order polyno-
mial) as trend model.

@ Task 3

Use a Wald test to compare the fit of the two models. Compare also the fitted variogram
parameters of the two models.
Which model fits the elevation data better?

1.4 Stepwise model selection

@ Task 1

Then use stepwise backward and forward covariate selection by step() to simplify the
model. Use the argument fixed.addl.drop1=FALSE when using step().

This has the effect that the variogram parameters are re-fitted for each tested model.
What model minimizes the AIC?

@ Task 2

Compare the three models by 10-fold cross-validation. Which model do you prefer based
on bias (me) and root mean square error (rmse)?




1.5 Computing kriging predictions

@ Task 1

Using the model which minimized AIC in the previous problem, compute the kriging
predictions of height for a rectangle with the lower left corner in (0.1, -0.1) and top
right corner in (6.4, 6.3). Use a grid increment of 0.05 when you generate the nodes of
the grid for which you compute the predictions.

Convert the dataframe with the prediction results to a SpatRaster using the functions
rast of the package terra.

@ Task 2

Plot the predicted height and its prediction standard error along with the lower and
upper limits of pointwise 95%-prediction intervals.

@ Task 3

For comparison, we plot also the quadratic trend surface along with the bubble plot of
the regression residuals superimposed. Use the points second level plot function to add
the bubbles.

2 Influence of variogram parameters on universal kriging predictions

Load the geoR package which provides the wolfcamp data. Create by the following code a
data.frame that contains a grid of prediction points.

library(geoR)

d.wolfcamp.grid <- expand.grid(
x=seq(from=-250, to=250, length=52),
y=seq(from=-150, to=150, length=32)

)

Then use the following code to explore the effect of the variogram parameters on the UK
predictions:

persp(
krige.conv(geodata=wolfcamp, locations=d.wolfcamp.grid,
krige=krige.control(trend.d="1st", trend.l="1st",
cov.model="spherical", cov.pars=c(sill=1000, range=100),



nugget=3000)),
theta=150, phi=30, d=5, scale=FALSE,
expand=0.3, shade=0.5, xlab="x", ylab="y", zlab="pressure"

@ Task 1

Vary the nugget-to-sill ratio for a total sill (= nugget + sill) equal to 4000.

@ Task 2

Using a constant nugget-to-sill ratio of 1:3 and a range equal to 100, compare the predic-
tions for a total sill of 400 and 4000.

@ Task 3

Vary the range for a nugget-to-sill ratio equal to 1:3.
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